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calculating the losses due to a finite «. In mathematical nota-
tion, this reads

lim[limla(,()«,'--];é lim [ lim ]

t—0 k—wlts0
II1. CoNcCLUSIONS

When calculating the conductor loss of planar transmission
lines by means of perturbation methods, the assumption of zero
strip thickness becomes critical: the surface current integral at
the strip edges does not exist. In the numerical analysis, the
results for the attenuation constant do not converge. For an
increasing number M of spectral eigenfunctions, «, approaches
infinity. However, «. shows a logarithmic dependence on M so
that, in practice, the unbounded behavior may be easily over-
looked or misinterpreted. As a consequence, attenuation results
obtained on the basis of zero-strip-thickness approaches, such as
the common spectral-domain technique, should be handled very
critically and checked against measurements.
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A Closed-Form Spatial Green’s Function for the
Thick Microstrip Substrate

Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard

Abstract —The spatial Green’s function for the open microstrip struc-
ture, especially with a thick substrate, is generally represented by
time-consuming Sommerfeld integrals. In this paper, through the
Sommerfeld identity, a closed-form spatial Green’s function of a few
terms is found from the quasi-dynamic images, the complex images, and
the surface waves, With the numerical integration of the Sommerfeld
integrals thus avoided, this closed-form Green’s function is computa-

Manuscript received May 15, 1990; revised October 22, 1990. This
work was supported by the Communications Research Center, Canada,
under Contract 36001-9-3581 /01-SS, and by the Natural Science Foun-
dation of the People’s Republic of China,

Y. L. Chow, J. J. Yang, and G. E. Howard are with the Department of
Electrical and Computer Engineering, University of Waterloo, Water-
loo, Ont., Canada N2L 3G1.

D. G. Fang is with the East China Institute of Technology, Nanjing,
China 210014.

IEEE Log Number 9041951,

tionally very efficient. Numerical examples show that the closed-form
Green’s function gives less than 1% error for all substrates and source-
to-field distances.

I. INrrODUCTION

In the modeling of microwave integrated circuits (MIC’s) and
microstrip antennas, much effort has to be dedicated to the
computation of Sommerfeld integrals. For a thin microstrip
substrate, say & /A, < 0.05, the quasi-dynamic image model intu-
itively developed by Chow [1] is a good replacement for the
Sommerfeld integrals. For a thick substrate and when the dis-
tance from the source point to the field point is great, however,
this replacement deteriorates because of its neglect of the
surface and leaky wave effects. To accurately model the thick-
substrate microstrip circuits, it appears that the time-consuming
numerical integration of Sommerfeld integrals has to be per-
formed [2], [3]. Although the exact image method was developed
for the microstrip structure [4], where the Sommerfeld integrals
were replaced by certain alternative infinite integrals, it was
shown in [5] that this alternative type of numerical integration is
still rather time-consuming.

In this paper, a closed-form Green’s function for a thick
microstrip substrate is presented. This Green’s function consists
of three parts: G= A+ B+ C, where A represents the contri-
bution from a few quasi-dynamic images dominating in the
near-field region, C represents the contribution from surface
waves dominating in the far-field region of the substrate surface,
and B represents the contribution from the complex images,
which are related to leaky waves and are very important in the
intermediate field region. With this closed form, numerical
integration of Sommerfeld integrals is completely avoided. It
will be shown below numerically that at any frequency, this
closed-form Green’s function gives less than 1% error compared
with the numerical integration of Sommerfeld integrals in the
whole range of substrate surfaces.

II. Tueory

Consider an x-directed electric dipole of unit strength located
above a microstrip substrate, as shown in Fig. 1. The spectral-
domain potentials in the air region can be represented as
follows:

- Mo . .
KX e —1k,(z—2") +R =tk o(z+2") 1
i o TE¢ ] (12)
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In (1), G4* stands for the x component of spectral-domain
vector potential A created by the x-directed electric dipole, and
G, stands for the spectral-domain scalar potential associated
with one charge of the dipole. Rz and R, take into account
the effects of the microstrip substrate. T?xe spectral-domain
Green’s functions of (1) were given in a more compact form by
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Fig. 1. The open microstrip structure.

Mosig and Gardiol [2]. Here we write them in the form of plane
wave summations. It can be seen below that this form is physi-
cally clearer for deriving the quasi-dynamic and complex images.

A. Sommerfeld Integrals with a Deformed Integration Path

Making the inverse Hankel transformation to the spectral-
domain Green’s function in (1), and using the Sommerfeld
identity [6] on the first exponential term, we can get the follow-
ing spatial-domain Green’s functions in Sommerfeld integral
form:

Ho e oo +o 1 . , .
G R —jk.o(z+2")
477( o Jw i2k,y TEC
-Héz)(kpp)kpdkp) (5a)
1 e Jkoro +o0
- + R +R —jk,o(z+2")
a 47re0( e . /_m 2k, (Rrg+ Ry)e
'Héz)(kpp)kpdkﬂ) (Sb)
where

ro=Vpi+(z-2).

The integration can be performed along the real axis C, on
the complex k, plane or along any other deformed path C,
passing through the origin and lying in the first and third
quadrants, as shown in Fig. 2(a). The integration path C; can be
deformed to C,, since no singularity is encountered in the
deformation. The corresponding paths of Cy and C; on the
complex k,, plane are shown in Fig. 2(b). The deformed path
C, is of special importance in finding the complex images and
will be discussed in subsection II-D.

B. Extraction of Quasi-Dynamic Images

It is seen from (4) that if the frequency is equal to zero, then
ko=0 and k,, = k,;. Therefore when the frequency is low, we
can use the approximation ko~ k,;, and Ry and R, can thus
be reduced to the quasi-dynamic forms:

Ryg = Rygo=— e 7/2kat (6a)
K(1— g~/4kaohy
R,»Ry= 1— Ke 2zt (6b)

where K =(1—¢,)/(1+ ¢,). Extracting the above quasi-dynamic
terms from the integrands in (5) and using the Sommerfeld
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Fig. 2. (a) The integration contours Cy and C; on the complex k,
plane. (b) The integration contours Cy and C; on the complex kzO
plane.

identity, we can rewrite (5) as follows:
Ko
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Expression (8) stands for the quasi-dynamic image model
intuitively developed by Chow [1]. It is pointed out in [1] that the
Faraday field (related to A") is not affected by the dielectric

=Vp?+(z+ 2 +2h)?

‘interfaces, while the Coloumb field is affected by the dielectric
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interfaces through an infinite number of images. From the
viewpoint of spectral-domain analysis, this quasi-dynamic model
is a low-frequency approximation of the full-wave solution.

It has been pointed out by Dai and Chow [7] that when e, is
large, G, in (8b) is a slowly convergent series. For instance, if
€,=129, h /A, =0.05, as many as 80 terms should be taken to
ensure the convergence. In [7], a reduced image model was
presented, in which only four images are necessary. Such reduc-
tion is not necessarily unique. Here a simpler alternative re-
duced image scheme is given below.

Expanding the R, of (6b) in Taylor series and taking only the
two leading terms, we have

©)

R, = K(1— e /*:oh)(1+ Ke/2kzoh),

Corresponding to (9), the quasi-dynamic Green’s function for
the scalar potential should be as follows:
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where (10) is a part (but not term by term) of the infinite series
in (8b). The contribution from the remaining part of the infinite
series will be included in the complex images discussed later.

C. Extraction of Surface Waves

Ryg and R, in the integrands of (7) have poles on the real
axis of the complex k, plane. Extracting all the poles from Rg
and R, we can rewrite (7) as follows:
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are the extracted terms corresponding to surface waves. Also,
k,, is the surface wave pole located on the real axis of the
complex k, plane, and Res is the residue of the integrand in (7),
at the pole k,=k,,. Fk,) and Fy(k,) are spectral-domain
quantities with the quasi- dynamlc part and surface waves ex-
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Fig. 3. (a) The behavior of the spectral function (Rtg + R ) along the
path C,. (b) The spectral function (Ryg + R,) with the quasx dynamlc
term extracted. (c) The spectral function (RTE+ R,) with the quasi-
dynamic and surface wave terms extracted (see eq. (14b))

The surface wave expressions have been used by Mosig and
Gardiol [2] as a far-field approximation on the substrate inter-
face. Here we take it as a constitutive part of the wave solution
for all distances p.

D. Complex Images

The remaining integrals in (11) can be simulated by several
complex images, similar to those in [5]. Here, in Fig. 2(a) and
Fig. 2(b), we choose a finite path C, to be a straight line on the
complex k,, plane, which corresponds to a finite curve C, on
the complex k, plane. The parametric equation of the straight
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TABLE 1
AMPLITUDES @; AND LocaTioNs b, oF THREE COMPLEX IMAGES
(e,=12.6, k=1 m, f =30 GHz, T; = 15.0)

G G,
a, b, al b/
Imaginary Imaginary Imaginary Imaginary
i Real Part Part Real Part Part Real Part Part Real Part Part
1 —-0.2760 —0.0022 —0.0453 0.0001 —-0.0678 0.0068 -0.0523 0.0101
2 —0.6067 0.0100 ~0.2624 —0.0015 —0.1548 ~0.0151 -0.2712 -~0.0139
3 0.8868 0.0547 —1.2064 -0.0897 0.0897 0.0171 —1.0598 ~0.3165
line is are dominant in the near ficld region. The third part comprises
: L substrate surface. The second part & very mportant n the
Crikzo= ko[_ jt+ (1 - Fo )} ’ O0<t<To (15) intermediate region, and is relatedrio leaky \l;r};vesl.) L

where ¢ is the running parameter and 7, is the truncation point.
T, should be larger than ‘/— to avoid the remnants of the
extracted surface wave poles. Beyond this point, the choice of T,
is quite arbitrary. In the numerical computation of this paper, T,
is taken as 15. Other values of T, (eg., Ty = 5 and 10) have been
tried, and they give the same results for G5* and G,.

We now represent Fi(k,) and F,(k,) by exponentlal forms of
the complex variable k of (15):

Fy(k,)= Zae b"ID—ZAeB’ (16a)
i—1 =1
Fy(k,) = Zae bikzo = ZAeB" (16b)
=1 i=1
where
a;= A,eBITo/lﬂ‘TQ b fo (17)

= B
ko(1+ jTy)

and similarly for ¢/ and b/. A complex function of a real
variable of a finite range can be approximated by the summation
of exponential functions, using Preny’s method [9]. Therefore

* the spectral function (Ryg + R, — Rygy—

when the transformation of (15) changes the complex variable

'k, into a real variable ¢, Prony’s method can be used.
Substituting (16) into (11) and using the Sommerfeld identity
(to avoid the necessity of numerical integrations in k o) we have

"=’G"+GAC,+GASW (18a)
G,=Gu+G, i +G, (18b)
where
N ~ ko,
Gi*, f—;iglaie :io (19a)
1 N ek
a,ci = py i=1“;" - (19b)

o2 NRY
ri=\/p2+(z+z—1bi) ri’=\/p2+(z+z~1bi) .

The subscript ¢i means complex image; r; and r/ are complex
distances; and a; and a; are complex amplitudes. Each term in
(19) represents a complex image.

Expression (18) is the final closed-form spatial Green’s func-
tion. it can be seen from (18) that Gi*or G, is composed of
three parts. The first part is the quasi- dynamlc images, which

E. Discussion of the Behavior of Ry + R,

It is interesting to see the behavior of spectral function
Ryp+ R, along the path C; on the complex k,, plane, since
this spectral function embodies all the field charactenstlcs on
the microstrip substrate. Fig. 3(a) shows the behavior of
Ryg + R, for a microstrip substrate (e, =12.6, h =1 mm) at 30
GHz. Two salient features are observed. The first is that
Ryg + R, does not vanish when k, is large, which implies that
the quasi-dynamic terms are involved. The second is that Rg +
R, has two sharp extrema along path C;, which implies that the
surface wave terms are involved. Fig. 3(b) shows the behavior of
R o) along path Cj,
i.e., with the quasi-dynamic terms extracted. It can be seen that
this function decays rapidly but still has the two sharp extrema.
With the surface wave poles also extracted, Fig. 3(c) shows the
behavior of the resulting function F,(k,) along path C;. It can
be seen that the sharp extrema completely vanish, but the decay
along C; is actually slower than that in Fig. 3(b) This spectral
function F,(k,) is associated with leaky waves. Despite the slow
decay, we can simulate these leaky waves by a few complex
images. Similar behavior is observed in Fi(k,).

III. NumMEeRricAL RESULTS

A microstrip substrate with €, =12.6, k=1 mm is examined
at three different frequencies (f = 10 GHz, 30 GHz, 50 GHz). A
typical set of three complex images at 30 GHz with T, of (15)
taken as 15 is listed in Table I.

Parts (a) and (b) of Fig. 4 show the amplitudes of the Green’s
functions computed by the closed forms (18) and by numerical
integration. It can be seen that the difference between the
closed-form Green’s function and numerical integration is nearly
unobservable; i.e., the difference is generally less than 1%.
Many examples to check the precision of the ciosed-form Green’s
function (18) have been calculated. They are not included here
because of limits on space.

IV. CoNcLusioN

Through the Sommerfeld equality, plus some analytical and
numerical techniques, a closed-form Green’s function for thick
microstrip substrate is presented. With this closed form, the
numerical integration of the Sommerfeld integrals can be
avoided completely, resulting in a significant reduction of com-
puter time. A typical example is that, for the substrate of
€,=12.6, h /Ay = 0.1, the closed-form Green’s function for the
scalar potential is only a ten-term expression: five terms for the
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Fig. 4. (a) The amplitude of the scalar potential G,. (b) The amplitude
of the vector potential G5*.

quasi-dynamic images (i.e., eq. (10)), three terms for the com-
plex images (i.e., Table I), and two terms for the surface waves.
The savings in computer time can be more than tenfold, with
the error less than 1% compared with the numerical integration
of the Sommerfeld integrals.

Finally, it should be pointed out that the closed-form equa-
tion (18) applies to all source-to-field distances on the substrate
surface. As discussed in the Introduction, it is in the form
A+ B+ C, representing the contributions of the quasi-dynamic
images, the complex images, and the surface wave. At different
distances, certain contributions may be small and can be dropped
without causing much error in the spatial Green’s function.
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Measurement of Dielectric Constant Using a
Microstrip Ring Resonator

P. A. Bernard and J. M. Gautray

Abstract —A new approach for measuring the permittivity of dielectric
materials by means of a microstrip ring resonator is presented. The
method is used in conjunction with the variational calculation of the line
capacitance of a multilayer microstriplike transmission line to compute
the effective permittivity and hence the resonant frequency of the ring.
The results are compared with measurements made in X-band wave-
guide cavity by cavity perturbation techniques.

I. INTRODUCTION

Microstrip ring resonators are frequently employed in mi-
crowave integrated circuit design. Resonant structures such as
rectangular, circular, and ring resonators have been widely stud-
ied in oscillators and filters [1]-[4]. The resonator is a large ring
that is several wavelengths long to avoid mutual inductance
effects [5] and problems caused by end effects in rectangular
microstrip resonators. What is more, these ring resonators have
Q factors of about 250, compared with 100 for rectangular ones.

The method presented here is based on the fact that the
effective permittivity will change if the alumina/air boundary is
modified by placing a dielectric material above the alumina
substrate, thereby changing the resonant frequency of the ring.
The variational calculation of the line capacitance [6], [7] is used
to compute the effective permittivity of the multilayer mi-
crostriplike ring resonator and hence the resonant frequency for
several test materials.

It is well known that the dielectric constant varies with fre-
quency. Since we are very concerned with this frequency depen-
dence, the test material above the Al,O, substrate must be
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